75	
	100 pts
	Glascoe Spring 2014
	MULTIPLE CHOICE: Please circle t
45	1. Use the compound interest formula
B	investment of \$30,000 at 5%comp

	Name Key
AAT 120/122 T6 Ch 10	Class Time

he entire answer

 $A = P \left(1 + \frac{r}{n} \right)^m$ to find the accumulated value of an ounded monthly for 10 years.

$$A = 30000(1 + \frac{0.5}{12})^{(12.10)} \approx 49410.28$$

2. Find the inverse of the one-to-one function $f(x) = (x+9)^3$ Show work for full credit.

a) $f^{-1}(x) = \sqrt[3]{x-9}$ b) $f^{-1}(x) = \sqrt[3]{x} + 9$ c) $f^{-1}(x) = \sqrt[3]{x} + 9$

a)
$$f^{-1}(x) = \sqrt[3]{x-9}$$

(b)
$$f^{-1}(x) = \sqrt[3]{x} - 9$$

c)
$$f^{-1}(x) = \sqrt[3]{x} + 9$$

d)
$$f^{-1}(x) = \sqrt[3]{x+9}$$

3. Write the equation in its equivalent logarithmic form: $\sqrt[4]{2401} = 7$

a)
$$\log_{2401} 4 = \frac{1}{7}$$

a)
$$\log_{2401} 4 = \frac{1}{7}$$
 b) $\log_{2401} 7 = \frac{1}{4}$ c) $\log_7 2401 = 4$ d) $\log_7 2401 = \frac{1}{4}$

c)
$$\log_7 2401 = 4$$

d)
$$\log_7 2401 = \frac{1}{4}$$

$$(2401)^{\frac{1}{4}} = 7$$

 \times 4. Evaluate the expression without using a calculator: $\log_2 \frac{1}{32}$ (show work)

b)
$$\frac{1}{5}$$

 \times 5. Find the domain of the logarithmic function: $f(x) = \log(x+7)$

a)
$$(7,\infty)$$
 b) $(-7,\infty)$ c) $(-\infty,7)\cup(7,\infty)$ d) $(-\infty,0)\cup(0,\infty)$

c)
$$(-\infty,7)\cup(7,\infty)$$

d)
$$(-\infty,0)\cup(0,\infty)$$

6. Graph the function: $y = \log_3 x$

7. Use properties of logarithms to expand the expression as much as possible and simplify where possible,

without using a calculator: $\log_2\left(\frac{\sqrt{y}}{8}\right)$ A

a)
$$\frac{1}{2}\log_2 y - 3$$

a)
$$\frac{1}{2}\log_2 y - 3$$
 b) $\log_2 \sqrt{y} - 3\log_2 2$ c) $\log_2 \sqrt{y} - \log_2 8$ d) $\frac{1}{2}\log_2 y - \log_2 8$

10921X-10928 \$109X-3

8. Solve the exponential using a natural log: $2^{x-7} = 6$

Express the solution set in terms of natural logarithms (leave exact using natural logs)

a)
$$\frac{\ln 2}{\ln 6} + \ln 7$$

a)
$$\frac{\ln 2}{\ln 6} + \ln 7$$
 b) $\frac{\ln 6}{\ln 2} - 7$ c) $\frac{\ln 6}{\ln 2} + 7$

d) $\ln 6 - \ln 2 - \ln 7$

(X-7) ln2 = ln 6

$$X-7=\frac{ln6}{a2}$$

 $X-7=\frac{\ln 6}{a^2} \quad X=\frac{\ln 6}{a^2}$

9. Solve the logarithmic equation: $\log_3(x+1) + \log_3(x-5) = 3$ (show work for full credit)

b) {9}

c) {-4}

- 10. The value of a particular investment follows a pattern of exponential growth. ($A = Pe^{rt}$) In the year 2000, you invested money in a money market account. The value of your investment t years after 2000 is given by the exponential growth model $A=4100e^{0.066t}$. When will the account be worth \$5703? (show work!)
 - a) 2007
- b) 2004

d) 2006

$$\frac{5703}{4100} = \frac{4100e}{4100} = 0.066t$$

$$\frac{5703}{4100} = 0.066t$$

$$0.066$$

OPEN ENDED QUESTIONS: Show ALL work on this test and CIRCLE your final answer.

11. If f(x) = 5x - 7, find $f^{-1}(x)$. Show all work for full credit.

$$\int f^{-1}(x) = \frac{x+7}{5}$$

12. f(x) = 3x + 1 and $g(x) = 2 - 4x^2$ find (f(g(2)))

$$g(z) = 2 - 4(z)^{2}$$

$$= 2 - 16$$

$$= 14$$

$$f(-14) = 3(-14) + 1$$

$$= -42 + 1$$

$$= -41$$

13. Write as a single logarithm whose coefficient is 1:

$$4\log_b x + \frac{1}{2}\log_b y$$

14. Evaluate each expression in the following without using a calculator (show all work), then find the overall

$$+3$$
 $+2$ $+2$ $+3$ $+3$ $+3$ $+3$ $(\log_7 49 + \log_1 10000 - \log_7 1 + e^{\ln 8} + 2\log_4 4) \cdot \log_{25} 5$

2004 - 2 (2+4+0+8+2). 5 2004 - 2 16, 5

15. Solve $3^{1-2x} = \frac{1}{81}$ Show work to solve for credit. Leave answer exact.

$$3^{1-2x} = 3^{-4}$$

$$-2x = -5$$

16. Solve $\log_2(x+2) - \log_2(x-5) = 3$. Show all algebra work. Leave answer exact.

$$|09_{2}(\frac{X+2}{X-5})=3$$

$$(X-5)_{2}^{3}=\frac{X+2}{X-5}(X-5)$$

$$Sx-40=X+2$$

$$7x=42$$

$$x=6$$

17. Graph
$$f(x) = \left(\frac{1}{2}\right)^x$$

*Label your axes to show the values you are counting by on your x and y axes.

27 Domain: (-%, %) 27 Range: (0, %)